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Abstract

Entropy is a fundamental quantity in the study of physical systems. It is strongly related to the
level of a physical system’s order and plays a crucial role in studying phase transitions, pattern
formation, protein folding, and more. Entropy is also fundamental in information theory, where it
is related to the amount of information in a given set of data.

However, current entropy estimation methods suffer from a high computational cost, lack of
generality or inaccuracy, and the inability to treat complex, strongly interacting systems. Direct
enumeration of entropy, for example, becomes computationally infeasible for even small, binary
systems. Also, many methods that work well for in equilibrium systems are inapplicable for out-
of-equilibrium systems as well.

Inspired by information theory ideas, this study shows that entropy could be calculated by
iteratively dividing the system into smaller subsystems and estimating each pair of halves’ mutual
information. The estimation is performed with a recently proposed machine learning algorithm
that works with arbitrary network architectures chosen to fit the system’s structure and symmetries
at hand. Unlike other recently suggested methods, neural networks are well fitted for 2D and
3D models. This study joins others showing that physics science can benefit from the recent
advancements in computer algorithms in general and in machine learning in particular.

The proposed method can be used to calculate various systems’ entropy, both thermal and
athermal, with state-of-the-art accuracy. Specifically, the method is examined on various classi-
cal spin systems and is used to identify the jamming point of a bidisperse mixture of soft disks.
Moreover, using methods of transfer learning, the proposed method performs in a reasonably fast
manner.

Lastly, it is suggested that besides its role in estimating the entropy, the mutual information
itself can provide an insightful diagnostic tool in the study of physical systems. Since mutual
information consists of all the relevant physical information in a system, it could identify phase
transitions or find correlation lengths.
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1 Introduction

1.1 Thermodynamics

1.1.1 Entropy

In thermodynamics, we study statistical systems using macroscopic quantities, such as heat, free
energy, work, and their relation to the physical properties of matter. Entropy (S), a fundamental
property of physical systems, is related to the free energy by the relation F =U−T S, where F and
U are Helmholtz free energy and internal energy of the system, and T is the temperature [4]. The
Helmholtz free energy is used for systems at a constant volume and temperature, such as those
presented in this work. Under different settings, other free energy functions should be used. The
internal energy of the system is often known. The calculation of entropy, however, is much more
difficult.

The second law of thermodynamics states that entropy of an isolated system cannot decrease
during a spontaneous change [5]. Statistical mechanics has successfully related entropy to the
probability distribution of microstates of a system. In that framework, the second law implies that
a system spontaneously evolves to the most probable macrostate [5].

For a given set of macroscopic properties, the entropy is interpreted as the amount of uncer-
tainty regarding the system’s microstate. It is, therefore, strictly related to the order of a system.
Since different phases of matter usually present different order levels, entropy is crucial to identify
phase transitions. The behavior of the free energy classifies phase transitions at the critical tem-
perature. Since entropy is related to free energy, it is often used to identify these phase transitions
[5].

The mathematical definition of entropy from statistical mechanics point of view is:

S =−kB ∑
i

pilog(pi), (1.1)

where pi is the probability that the system is in the i-th microstate, and kB is the Boltzmann
constant [5].
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1.1.2 Continuous Limit

Defining the entropy as a sum over different microstates as in (1.1) is clearly possible only when
the number of microstates is finite. When a system has an infinite number of microstates, for
example when the system is continuous, Eq. (1.1) is no longer valid.

Shannon offered the differential entropy S̃=−
∫

x p(x)log(p(x))dx as the continuous equivalent
to entropy [6]. However, this definition lacks invariance under a change of variables and does not
follow entropy’s positivity requirement. A correct definition of entropy for continuous variables
was introduced later by Jaynes [7].

Although inaccurate, a clear connection between the differential entropy and the discrete
entropy could be established for a discretized continuous system. The choice of discretization
scheme affects the entropy in a nontrivial manner.

Let us consider a continuous variable xxx, mapped to a discrete variable I(xxx) where I takes one of
a finite set of values which we denote I1, I2, . . . . Each Ii is associated a pre-subset Ωi, observation
probability pi and phase-space volume vi, defined as follows:

Ωi ≡ {xxx | I(xxx) = Ii} ,

pi ≡
∫

Ωi

p(xxx)dxxx ,

vi ≡
∫

Ωi

1dxxx .

(1.2)

In the limit of very fine discretization, i.e. maxi{vi} → 0, and assuming p(xxx) is not ill-behaved,
the second definition can be approximated as

pi ≈ p(xxxi)vi, (1.3)

where xxxi is any point in Ωi. This approximation is accurate when the discretization is fine enough
such that p doesn’t change considerably across Ωi, i.e. when all configurations that are mapped to
the same image are roughly equiprobable. When this happens, the differential entropy S̃ can be
approximated by a Riemman sum:

S̃ =−
∫

p(xxx) log p(xxx)dxxx≈−∑
i

(
p(xxxi) log p(xxxi)

)
· vi

≈−∑
i

(
pi

vi
log
(

pi

vi

))
· vi = ∑

i
(−pi log pi + pi logvi) = S+∑

i
pi logvi .

(1.4)

We see that S̃ differs from S by a term logarithmic in the resolution size.

As an aside, we note that (1.4) has an intuitive interpretation: logvi is exactly the entropy of a
uniform distribution over Ωi (whose probability density is p = 1

vi
). Therefore, the differential en-

tropy S̃ measures the uncertainty (=entropy) associated with knowing in which Ωi the observation
xxx resides, plus the average uncertainty (=entropy) associated with knowing where does xxxi resides
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within Ωi.

1.1.3 Information Theory

Information theory is a field of mathematics, started by Claude Shannon in 1948 [6]. It regards
the mathematical theory of storage and communication of information. Entropy is a fundamental
concept in the field of information theory as well. Information theory interprets entropy as the
amount of "information" in a random variable or a given system.

Shannon derived his formula for entropy using a different method than physicists. He intro-
duced I(x), the information content of an event x. Since the information of an event that always
happens should be 0, and the information given by two independent events should be the sum of
the different information contents, one can show that I(x) = − log p(x), where p(x) is the prob-
ability of the event x to occur. The minus sign results from the requirement that the informa-
tion decreases with p(x) increasing. Now given a distribution of events X ∼ P, Shannon defined
the entropy as the average amount of information given by knowing the outcome of X , hence,
S =−EX∼P[I(x)] =−∑x∈X p(x) log p(x).

Understanding entropy from an information theory point of view is very simple. Consider a
system of N(= Nw +Nb) pixels, Nw of which are white, and Nb of which are black. In the limit
of N → ∞, Nw = pwN, where pw is the probability to observe a single white pixel (Fig. 1.1). If
we look at the number of realizations of the system, Ω, we see that logΩ = log N!

((pwN)!((1−pw)N)! .
Using Stirling’s formula we get:

logΩ = N(−pw log pw− pb log pb) (1.5)

We can easily expand Eq. (1.5) to multiple colors {i} and get:

logΩ = N(−∑
i

pi log pi)

1
N

logΩ =−∑
i

pi log pi

(1.6)

Now we can ask how many bits of information are necessary to describe a specific realization
of the image. The number of required bits is 2NH where H =−∑i pi log pi is Shannon’s entropy.
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Figure 1.1: Black and white images described using a string of bits. The entropy of a
black and white image is H =−pw log pw− pb log pb, where pw, pb are the ratios of white
and black pixels. The number of bits necessary to describe a specific realization of a
black and white image is 2NH , where N is the total number of pixels in the image.

A similar relation between entropy and information was introduced by Kolmogorov, using
Kolmogorov complexity [8]. Kolmogorov complexity measures the length of the minimal program
that is required to generate a sequence of characters. A long sequence of N ’0s’ is considered to
have low complexity since a program of size logN can compute the sequence. It can be shown
that Kolmogorov complexity is asymptotically Shannon’s entropy [9, 10].

By definition, the lossless compressed length of some data is bounded by the theoretical notion
of Kolmogorov complexity [8], entropy is also an essential concept in the field of communications.

1.2 Methods For Entropy Estimation

Being such a fundamental quantity, many methods have been developed to efficiently and accu-
rately calculate a given system’s entropy. Some classical methods were developed from a pure
physics perspective, while information theory definition of entropy inspires others [11, 1, 12].

Many considerations should be taken when reviewing such a method. Some methods suffer
from a high computational cost, lack of generality or inaccuracy, and inability to treat complex,
strongly interacting systems. A general, efficient, and accurate method has yet to be developed.
Here we will discuss some of the more common methods.

1.2.1 Analytical

For some systems, a closed analytical expression of entropy can be found. These systems are
often simple and weakly interacting. For the canonical ensemble, the analytical expression is

6



often derived using the relation between entropy and the canonical partition function Z:

S =
(

∂kBT log(Z)
∂T

)
V

(1.7)

Such a solution was derived for the 1D Ising model on a lattice, for example [13]. The Ising
model’s partition function could be written as a trace of transfer matrices representing bonds be-
tween neighboring spins. Then, the partition function is written in terms of these matrices’ eigen-
values, and an analytical solution can be derived for the entropy (see full derivation in [14]).

If we consider systems with strong, long-range interactions, finding an analytical expression
for the partition function is much more challenging. For these systems, transfer matrices or renor-
malization group methods could no longer be used. These methods usually rely on the fact that the
entire system could be looked like an expansion of a small subsystem. This is impossible when
far neighbors interact since each particle is affected by the entire system. Therefore, for complex,
strong interacting systems, it is usually infeasible to find an analytical expression of entropy.

1.2.2 Direct Enumeration

For systems in thermodynamic equilibrium, with an average energy and constant volume, it can
be shown that the microstates are distributed according to a Maxwell-Boltzmann distribution:

pi =
e−

Ei
kBT

Z
, (1.8)

where Ei is the energy of the i-th microstate. Therefore, it is possible to enumerate over all the
microstates of a system, calculate their probabilities, and calculate the entropy of the system ac-
cording to Eqs. (1.1), (1.8). Even for a binary state particle system, this becomes computationally
infeasible very fast as the system grows.

1.2.3 Specific Heat Integration

A standard method of estimating thermodynamic systems’ entropy is to integrate the specific heat
from low temperatures. This method relies on the relations

cV = T
(

∂S
∂T

)
V
, and (1.9)

cV =
〈E2〉−〈E〉2

T 2 , (1.10)

where cV is the heat capacity, E is the energy, and 〈·〉 denotes thermal averaging. Eq. (1.9) re-
lates the entropy to a measurable quantity, the heat capacity. This is extremely important since
it allows the computation of entropy from experiments. This is why, often, heat capacity mea-
surements would be used by experimentalists to identify phase transitions [15], and to validate
thermodynamics rules.
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Eq. (1.10) is essential since it relates the heat capacity to quantities that could be easily esti-
mated from simulations - the average energy and its fluctuation. This method allows us to estimate
the specific heat, viz. the entropy, relatively easily from a physical simulation. S(T ) can be calcu-
lated using (1.10) and integrating the specific heat from zero temperature to T . When performing
the integral it is assumed that S(T = 0) = 0. This assumption could be violated under some con-
ditions. Ginnings et al. calculated the specific heat of aluminum for T = 0◦ to T = 900◦ [16]. The
entropy was later estimated by integrating the specific heat.

This method is problematic for systems that experience high degeneracy at low temperatures.
In these cases, estimating the energy fluctuations accurately becomes very hard. Moreover, the
integration process could result in recurring errors from a single misestimation of the specific
heat. Also, this method applies only to thermal systems, where the temperature is well-defined.

1.2.4 Compression

Inspired by the ideas presented by Kolmogorov and the relation between information content and
entropy, recent studies have suggested that compression algorithms could be used to estimate the
entropy of physical systems [17, 1, 12]. The compression-based methods capitalize on decades of
research in computer science, which resulted in fast and efficient compression algorithms, such as
the Lempel-Ziv algorithm or variants of it [18] which are widely available.

Avinery et al. [1] recently showed that using compression algorithms, one can compute, to a
good approximation, the entropy of reasonably complex systems. Avinery et al. assume that given
a system, its entropy could be estimated by defining an incompressibility content value, η , which
is defined by:

η =
Cd−C0

C1−C0
, (1.11)

where C0,C1 are the minimal and maximal compressed sizes of files generated by compressing the
dataset of samples, and Cd is the average size of a file generated by saving the system’s state on a
binary file. The relation then estimates the entropy:

S
kB

= ηD logns, (1.12)

where D is the number of represented degrees of freedom of the system, and ns is the number of
states of each particle in the system (see Fig. 1.2). This method showed to be both extremely
efficient and fairly accurate for several physical systems.

Martiniani et al. [17] showed that using compression, one can measure computable infor-
mation density (CID) of a system as a quantitative measure of entropy for both equilibrium and
out-of-equilibrium systems. Later, Bupathi et al. [12] modified this method to be independent of
off-lattice systems’ discretization scheme. Zu et al. showed that although this method performs
well for in-equilibrium systems and simple out-of-equilibrium particle systems, it performs poorly
for more complex systems.
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Figure 1.2: Schematic of entropy calculation using a compression algorithm. Simu-
lations of physical systems are preprocessed and encoded into data files. Entropy is
directly calculated from the size of the compressed (Cd) and calibration (C0;C1) data, as
well as the entropy range (Smin;Smax) (see Eq. (1.11), Eq. (1.12)). Adapted from Avinery
et al. [1].

1.3 Out-of-equilibrium Systems

Studying physical systems that are not in equilibrium with their surroundings is both an old and
a new field of study. For example, Boltzmann derived the famous Boltzmann equation, which
describes the evolution of the distribution density function of a particle due to collisions and free
flight of particles in 1882 [19]. In contrast, Jarzynski’s inequality, which relates the difference in
free energy between two states in an irreversible process, was derived only in 1996 [20]. Jarzyn-
ski’s work is part of recent advancements in deriving relations between the thermodynamic prop-
erties of matter out-of-equilibrium.

Specifically, the problem of calculating the entropy for non-equilibrium systems is complex
both practically and conceptually. Meixner, for example, doubted the existence of unique non-
equilibrium entropy [21].

Unlike in-equilibrium, it is impossible to use Eq. (1.8) to estimate the probability to be in
microstate i far from equilibrium. Moreover, the definition of temperature is not always possible
for these systems. Therefore, new definitions for the entropy were suggested over the years [22].
Often, entropy production would be considered as the studied quantity when discussing out-of-
equilibrium systems[23].

However, one can extend the information theory entropy to out-of-equilibrium systems. As
explained in Sec. 1.1.3, given a set of microstates {i}, the entropy of the system is calculated
using the information encoded in each microstate i. This is independent of whether or not the
distribution pi is an equilibrium distribution. Recently, several alternative methods were suggested
to estimate the entropy for out-of-equilibrium systems [24, 1, 20, 17, 25, 12].
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1.4 Mutual Information

In thermodynamics, entropy is considered extensive, hence a quantity that scales linearly with
system size [5]. This is only approximately true. The entropy is strictly sub-extensive. The
quantity that measures the sub-extensiveness is called mutual information. To be precise, the
mutual information (M) between two random variables A,B is defined by the following relation:

S(A,B) = S(A)+S(B)−M(A,B), (1.13)

where S(A),S(B) are the entropies of A and B, respectively, and S(A,B) is their joint entropy (Fig.
1.3). It is easy to show thatM(A,B) is strictly non-negative [26]. Therefore, if we think of A and
B as two halves of a thermodynamical system, this equation tells us that the entropy of the joint
system is smaller than the sum of its components’ entropies.

Figure 1.3: Given two systems A,B, the mutual information M(A,B) quantifies the sub-
extensiveness of their mutual entropy.

From an information theory point of view, mutual information quantifies the dependence be-
tween two random variables, A and B. Mutual information is used in many fields of thought, such
as machine learning, phylogenic profiling, and physics [27, 28, 29]. Koch-Janusz et al. showed
that using a machine learning algorithm and mutual information; one can identify the relevant
degrees of freedom in physical systems and execute renormalization group steps iteratively to a
given system [30].

1.4.1 Mutual Information And Free Energy

Recently, Belghazi et al. proposed a method to calculate the mutual information between high
dimensional random variables with neural networks [27]. Their idea is simple and elegant: fol-
lowing a theorem by Donsker and Varadhan [31], the mutual information between two variables,
A and B, can be expressed as a solution to a maximization problem.
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The proof of this theorem is elegant and straightforward and could be easily understood from
a thermodynamics perspective [27]. First, it is known that the mutual information is equal to the
Kullback-Leibler divergence (DKL) between the joint distribution, PA,B, and the marginal distribu-
tion PA×B, where DKL between two probability distributions, P,Q is defined as:

DKL(P||Q) := Ex∼P[log
p(x)
q(x)

], (1.14)

where Ex∼P[x] is the mean value of x over P, and p(x),q(x) are the probability distribution func-
tions.

For any function T we can define a partition function Z = EQ[eT ], and a Boltzmann factor G

such that g(x) = 1
Z eT q(x). We get by construction:

Ex∼P[T ]− logZ = Ex∼P[log
g(x)
q(x)

] (1.15)

Now we can define a gap ∆ to be:

∆ := DKL(P||Q)− (Ex∼P[T ]− logEx∼Q[eT ]) (1.16)

Using equations (1.14), (1.15) and the positivity of DKL we can easily see that:

∆ = Ex∼P[log
p(x)
q(x)

− log
g(x)
q(x)

] = DKL(P||G)≥ 0 (1.17)

The inequality Eq. (1.17) is preserved for any function T , and is therefore preserved under
taking the supremum of the right hand side. For G = Q, namely for optimal functions T ∗ taking
the form T ∗(x) = log p(x)

q(x) +C,C ∈ R, the bound in (1.17) is tight.

In statistical mechanics, the probability to see some subsystem in a state A is proportional to
e−βFA , where FA is the free energy of that state. Therefore, from a statistical mechanics point of
view, given two subsystems with a joint distribution PA,B, and a marginal distribution PA×B, we
see that ∆ = 0 for the mutual information if:

T ∗(x) = log
pA,B(x)
pA×B(x)

= log pA,B(x)− log pA×B(x) =−β (FA,B−FA×B), (1.18)

where FA,B is the free energy of the joint state, and FA×B = FA + FB is the free energy of the
marginal state.

This is correct for a specific set of states, A,B. To calculate the mutual information, we need
to average this value over all the states:

M= DKL(PA,B||PA×B) =−Ex∼PA,B [βFA,B−βFA×B] (1.19)
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If the two subsystems have no interaction, we see that:

F =U−T S

M= EPA,B [SA,B−SA×B] = EPA,B [S(A,B)−S(A)−S(B)]
(1.20)

where T here is the temperature, and U is the internal energy. We got the same relation we have
shown earlier between entropy and mutual information. A more careful treatment should be taken
when the subsystems interact, but it will not be shown in this work’s scope.

From the previous, we see thatM(A,B) can be written as:

M= sup
T ′∈T

[〈
T ′(A,B)

〉
PA,B
− log

〈
eT ′(A,B)〉

PA×B

]
. (1.21)

where T : A×B→R is a family of functions, PA,B is the joint distribution of A and B, and PA×B is
product of their marginal distributions. We will, later on, define what our T is.

We conclude that estimating the mutual information is equivalent to finding the function that
maximizes the right-hand side of (1.21), viz. we transformed the problem of estimating mutual
information to an optimization problem.

1.5 Machine Learning and Optimization

Machine learning is attributed to developing computer programs that are not directly programmed
but rather "learn" to solve problems independently. In the last decade, machine learning has been
the engine behind the rapid increase in computers’ capabilities in different tasks, such as image
processing [32], classification [33], biometrics [34], and more.

Machine learning algorithms are based on mathematical concepts of probability theory, lin-
ear algebra, and optimization. Most machine learning algorithms use the same general setting -
building a model based on some data, evaluating the performance of the model, and optimizing it.

In recent years, physicists have found several applications to machine-learning algorithms.
Koch-Janusz and Ringel used an artificial neural network to demonstrate renormalization group
flow on several statistical physics systems [30]. Kim et al. showed that one could use a machine
learning-based technique to compute the entropy production of physical systems [35]. Others have
shown that phases transitions could also be detected using machine-learning methods [36, 37].

1.5.1 Artificial Neural Networks

The most common model used in machine learning is the artificial neural network (ANN). ANNs
have relatively simple structures; they are based on the perceptron model invented by Frank Rosen-
blatt in 1958 [38]. The perceptron is a node with n inputs, a weight, a bias, and a non-linear ac-
tivation function. The inputs of the perceptron are multiplied by the weight, summed, and input
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to the non-linear activation function (see Fig. 1.4). The most common activation function is the
rectified linear unit (ReLU), ReLU(x) = max(0,x).

ANNs are just layers of perceptrons, with many perceptrons at each layer, where every node
is connected to every node in the next layer (see Fig. 1.4). These layers are called fully connected
layers. ANNs were researched as early as the early 1940s but did not become a useful machine
learning tool until more recent developments allowed efficient training of large networks [39, 40].

Figure 1.4: The perceptron algorithm - an input vector x1,x2, ...,xn is multiplied by
weights w1,w2, ..,wn and activated by a non linear function (top figure). A neural net-
work includes many perceptrons connected to each other (bottom figure).

ANNs are known for their ability to represent complex functions. The Universal Approxima-
tion Theorem states that using a one-layer neural network with a sigmoid activation function, one
could represent any continuous function [41]. This means that theoretically, almost any problem
that is solved by finding some optimal input function, as complex as it is, could be solved using
an ANN. Of course, the theorem is useless in practice as it will require an enormous number of
nodes [42]. In the last decade, advancements in computational tools, specifically the improved
graphics processing unit (GPU) performance that enables much faster matrix multiplications and
convolutions, have allowed ANNs to become the most useful machine learning models.
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1.5.2 Supervised Vs. Unsupervised Learning

Machine learning problems are often divided into two classes. In supervised learning, the data is
often labeled, and we can use these labels to evaluate our algorithm’s performance. For example,
in classification problems, such as identifying cats and dogs images, one could evaluate its cur-
rent algorithm’s performance by measuring how many images are classified correctly using these
parameters.

Note that in the presented case, we do not know the mutual information in advance. Therefore,
we can not optimize our network with respect to a known value. This also means that we do not
know whether or not our result is accurate after optimizing the network. Settings where no labels
are available, are called unsupervised settings.

1.5.3 Evaluation

Given a network, we wish to evaluate its performance. In machine learning in general, and partic-
ularly in ANNs, this is done using a loss function. A loss function measures the performance of
the network. In the learning process, the network tries to minimize the loss function by adjusting
its parameters (i.e., weights). In our case, our network’s loss function is simply the minus of the
right-hand side of equation 1.21, since we want to find a network that minimizes this value.

Often, networks tend to overfit their performance to the specific data set they were given [43].
When a network is tested on a new data set, it might perform worse than we expect. Thus, after it
is done training, the final evaluation of a network is usually performed using an independent data
set called testing data set.

1.5.4 Optimization

Given a model and an evaluation of its performance, we want to change the model to improve
its performance. In ANNs, changing the model means changing the weights and biases of the
nodes. The most common method for optimizing ANNs is the gradient descent (GD) method
and its variants. GD is an iterative method in which every parameter, wi, is updated according
to ∆wi = − ∂L

∂wi
, where L is the loss function. Hence, we minimize the loss function to a local

minimum [44].

Although this might sound computational costly, ANNs have a beautiful trick called back-
propagation that allows efficient calculation of the gradients [45, 46]. Loosely speaking, back-
propagation follows the usage of the chain rule to the derivative of the loss function concerning
the last layer and propagates it through every layer back to the first one.

Gradient descent suffers from being computationally costly if calculated over the entire dataset
at each iteration [39]. The stochastic gradient descent (SGD) uses a batch of data points at each
iteration and computes the gradients solely on them. It can be proven that SGD converges to
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the same solution as GD in expectation [47, 44]. In our work, we use Adam optimizer (adaptive
moment estimation), a variant of SGD [48].

Following the presented methods for evaluation and optimization, neural networks can solve
almost any optimization problem. First, a dataset is generated. We then define a loss function we
wish to minimize. Using optimization methods, we can find a neural network that minimizes this
loss function, i.e., solving the problem on the given dataset.

1.5.5 Transfer Learning

Transfer learning is a method in which weights of a network trained for some setting are used for a
different setting. For example, a network trained to classify cats’ and dogs’ images could classify
different images, such as horses and monkeys. In the training process, the network usually learns
to extract the input features and then fine tune them to receive the optimal result. Similar settings
will usually have similar features. Therefore, transfer learning works very well in practice because
it allows the network to use the previously learned features to solve new problems [49].

In practice, transfer learning usually means that the first layers’ weights are saved for the
new setting, while the last layers of the network are retrained. In our work, we used the transfer
learning method to speed-up the training process. For example, we used a network that was trained
for some temperature, for nearby temperatures as well.

1.5.6 Convolutional Neural Networks

ANNs suffer from two primary defects - first, the amount of weights rapidly becomes unman-
ageable for large inputs [42], second, fully connected ANNs perform poorly for input with local
spatial features [42]. In a fully connected ANNs, every node is equally connected to every node in
the previous layer. Therefore, the architecture has no sense of locality. Although the network could
learn to "turn off" connections between distant nodes, this is extremely costly and works poorly in
practice. Convolutional neural networks (CNNs) were invented to address these problems.

The lack of locality of an ANN could be solved by connecting each node only to neighbor
nodes in the previous layer, an architecture called a locally connected network. CNNs assume
that their input’s features are both local and symmetric under translations; hence the same set of
features could be applied to every region of the input. This concept is called "weight sharing". In
a CNN, the network’s first layers are built of filters - small matrices of weights convolved with the
input (see Fig. 1.5). In such a way, both problems are solved - each filter looks at a spatially small
area of the input, and the number of parameters is smaller and independent of the input size [50].

It is considered that the convolutional layers allow the network to extract general features of
the input; each layer extracting more delicate features [51]. In most architectures, the last layers
of CNNs are standard fully connected layers. In our paper, we used CNN architecture since most
of the physical systems we examined show translational invariance.
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Figure 1.5: A convolutional layer is made of filters. Each filter is a matrix that is convo-
lutionized with the input of the layer. Adapted from [2].

1.6 Physical Models

In the following work we present a method for entropy calculation of physical systems. To demon-
strate our method’s performance and versatility, we chose four systems representing different
classes of collective behavior.

1.6.1 Ising Model

The Ising model is a canonical example of a system with a second-order phase transition. It has
been extensively used to solve a variety of physics problems, from liquid-gas models to spin-
glasses. The model consists of spins with the binary state (up or down), coupled to their closest
neighbors with a positive constant J, on a lattice. The Hamiltonian of the Ising model (under no
external field) is given by:

H =−∑
i

∑
j∈ineighbors

Jσiσ j (1.22)

where σi is the state of the i-th spin. The problem was analytically solved in one, and two dimen-
sions by Onsager [14]. When examined over a square lattice, the system shows a phase transition
from an ordered phase at a low temperature to a randomly oriented phase above the critical tem-
perature (see Fig. 1.6).
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Figure 1.6: The 2D Ising model, a system of coupled binary spins on a square lattice.
Below the critical temperature Tc, the spins are ordered (left panel), and above Tc, they
are disordered (right panel).

1.6.2 Antiferromagnetic Ising Model

The antiferromagnetic Ising model Hamiltonian is described as the ferromagnetic Ising model, but
with a coupling constant J =−1. This model is examined on a triangular lattice, meaning that each
spin has six neighbors (Fig. 1.7). At T → 0, neighboring spins tend to be opposite to each other.
On a triangular lattice, this results in a high degeneracy in the number of microstates possible at
T = 0 and a non-zero entropy, unlike the ferromagnetic case. The antiferromagnetic model has an
analytical solution as well [52], and it exhibits no phase transition.

Figure 1.7: The 2D antiferromagnetic Ising model on a triangular lattice. Below the crit-
ical temperature Tc, the spins are ordered in opposite directions(left panel), and above
Tc, they are disordered (right panel).

1.6.3 XY Model

The XY model is another well-studied model of spins. Unlike the Ising model, the spins have a
continuous direction. The XY model features a topological phase-transition, called the Kosterlitz-
Thouless transition, from a disordered high-temperature state to an ordered low-temperature state.

The phase transition is related to "vortex" points around which spins "turn around" an inte-
ger number of times (see Fig. 1.8). At low temperatures, the system consists of bound vortex-
antivortex pairs, while at high temperatures, unbound vortices and antivortices are formed [53].
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Although an exact solution of the XY model is not possible through the transfer matrix approach,
an estimation of the critical temperature could be achieved [54].

The XY model is another fundamental statistical mechanics system, as the Kosterlitz-Thoulsess
transition also appears in liquid crystals, thin films of liquid helium, films of superconductors, and
more [55, 56].

Figure 1.8: The 2D XY model on a square lattice. Spins tend to develop vortices, points
around which the spins rotate.

1.6.4 Bidisperse Mixture System

Jammed solids are a prominent class of out-of-equilibrium systems whose entropy plays a crucial
role in their dynamics [57]. In these systems, the entropy, which stems from steric interactions,
is geometric and measures the number of ways the system’s constituents can be ordered in space
without overlap. When this depends sensitively on the density, jamming occurs.

Different definitions of what state is considered jammed have been offered, but the most ac-
cepted one was offered by O’Hern et al. [58]. They were also the ones who suggested that the
jamming point may act as a critical point. By their definition, an unjammed state is a state where
the energy per particle E/N is very low, below some cutoff energy. Above the jamming point, the
particles are mechanically stable, and they are characterized by finite energy, pressure, and shear
yield stress. The energy of the particles is related to overlap with other particles.

The jamming transition is also important as it is thought that understanding it would guide us
in understanding one of the most important open problems in condensed matter physics - the glass
transition, which is also intimately related to entropic effects [57, 59, 60].

While most jammed systems are 3D, interesting phenomena of jamming are investigated in
2D as well [61]. These systems are easier to investigate as they are simpler and require less
computational resources.

A widely investigated system that exhibits a jamming transition is the bidisperse mixture of
disks [58]. The ’classic’ mixture involves two types of disks, with a radius ratio of 1 : 1.4, and a
50 : 50 mixture, although other mixtures have been studied as well.
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This system is known to exhibit a jamming transition at a density of φJ ≈ 0.84 [58]. Many
methods have been suggested to calculate this density, using dynamic properties such as the jam-
ming length scale or the effective viscosity [62], using static properties such as pair-correlations or
fraction of jammed particles, and more [61, 62]. In [61], the jamming transition point φJ is defined
as the density from which half of the packings are jammed, according to the definition of [58].

Up to recently, we know of no attempts to estimate the entropy of the bidisperse mixture
[63, 64]. Zu and collaborators tried to measure the entropy of such a system using compression
based-methods [12]. However, they could not detect a signature of the jamming transition using
their estimated entropy.

Figure 1.9: The bidisperse mixture of disks below (left) and above (right) the jamming
transition. The ’classic’ mixture involves two types of disks, with a radius ratio of 1 : 1.4,
and a 50 : 50 mixture. Adapted from [3].

1.7 Simulation Methods

1.7.1 Metropolis Algorithm

Both the ferromagnetic and antiferromagnetic Ising models were simulated using the Metropolis
algorithm. Metropolis algorithm is the most common method for simulating many-body systems
and generating a representative set of states of a given system [65, 66]. The algorithm works as
follows:

• A random initial state is generated.

• A random new state is generated.

• If the new state results in a lower energy state, we advance the system to the new state.

• If the new state is a higher energy state, it is accepted in probability P = exp(−β∆E), where
β = 1

kBT , and ∆E is the difference in energy between the two states.
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• Steps 2-4 are repeated until equilibrium is reached.

It can be easily proven that the Metropolis algorithm satisfies two important conditions – detailed
balance and ergodicity [66].

1.7.2 Wolff Algorithm

The Metropolis algorithm can fail for some systems, where the system might get "stuck" in local
minimal energy states. A simple example could be seen in the XY model. We can consider
two states with the same distribution of spins but rotated in a constant angle one from another.
Using the Metropolis algorithm, transferring from one state to another would be almost impossible,
although they are equally probable.

Many algorithms solve these problems. The Wolff [67] algorithm offers a solution to this
problem for spin models by flipping clusters of spins instead of single spins, and it could be
described as follows (adapted from [68]):

• A spin i is selected at random and added to a stack.

• A transformation r is generated from a distribution f (r) (a rotation sampled from uniform
distribution for example).

• While the stack is not empty

– Pop a site m from the stack.

– if the site is not marked:

* Mark the site.

* For every neighbor n of the site, add it in probability min(0,expβ (Z(r · sm,sn)−Z(sm,sn))

where Z is the coupling function between two neighbor spins.

* Take sm→ r · sm

When the stack is exhausted, all the marked spins are rotated together. This algorithm was
used to simulate the XY model system. The algorithm is modified using a "ghost spin" and a
modified Z̄ coupling function, as discussed in [68].

20



2 Machine-learning Iterative Calcu-
lation of Entropy

2.1 Converting Mutual Information To Entropy

The relation between entropy and mutual information (1.13) allows the calculation of an extensive
system’s entropy by estimating each of its halves’ entropy and the mutual information. Since the
computational cost of estimating the entropy grows exponentially with the system size, the latter
might be a significantly easier problem than the former.

With this in mind, consider a large physical system X0, of volume V0, which we divide to two
equal halves. If we deal with translationally invariant systems, as we will assume for the remainder
of this work, the two halves are statistically indistinguishable, and we’ll denote both of them by
X1. With this notation, Eq. (1.13) takes the form

S(X0) = 2S(X1)−M(X1) , (2.1)

whereM(Xk) is a shorthand notation for the mutual information between two neighboring subsys-
tems Xk. Each of the halves can be further divided into two statistically indistinguishable halves,
and this process can be iterated arbitrarily many times (see Fig. 2.1). After m iterations, we find
that:

s(X0)≡
S(X0)

V
= sm−

1
2

m

∑
k=1

M(Xk)

Vk
, (2.2)

where Vk = 2−kV0 is the volume (or area in two dimensions) of the kth subsystem, and sm ≡
S(Xm)/Vm is the specific entropy of the mth subsystem.

Hence, using eq. (2.2) we decomposed the entropy S into contributions from different length
scales. At very short scales, the iteration should only be carried out until Xk becomes small enough
that its entropy can be directly calculated, either by brute-force enumeration or using other meth-
ods. Since Vk decreases exponentially with k, the number of needed iterations is logarithmic in the
system size. In many cases, the actual value of the first term in the right-hand side of Eq. (2.2),
hence the smallest subsystem’s entropy, is an uninteresting additive constant with no physical
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significance and can be ignored.

In summary, the crux of the method presented in our work is replacing entropy evaluation
with the calculation of the mutual information between subsystems of varying sizes. It is left to
understand how to calculate the mutual information.

Figure 2.1: The problem of entropy estimation could be converted to a series of mutual
information estimations. By estimating the mutual information between two halves of a
subsystem M(Xi+1), we can estimate S(Xi) from S(Xi) = 2S(Xi+1)−M(Xi+1).

2.2 Mutual Information Extrapolation

For large enough subsystems, that is, scales much larger than the longest correlation length of the
system, we expectM to grow linearly with the interface length. In precise terms, we expect

M(Xk) =
`k

`n
M(Xn) , (2.3)

where `k is the interface length between two subsystems in the k-th iteration. If we assume this is
obeyed for all systems larger than Xk, this relation can be used to replace the summands in (2.2),
and the summation can be done analytically without calculations on subsystems larger than Xk.

2.3 Entropy Estimation

Now that we established that entropy estimation could be transformed into an iterative mutual
information estimation problem (Eq. (2.2)), and how ANNs can be used to solve optimization
problems, such as mutual information estimation, we can introduce MICE, Machine-learning Iter-
ative Calculation of Entropy algorithm which is the core idea of my thesis and the subject of my
attached recently published paper [3].

First, using standard methods, we can simulate various physical systems. The simulation
results in a sizable dataset of microstates. Then, for each size of the subsystem pair, we generate
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two datasets: one in which the two subsystems are taken from the same larger sample (the "joint"
dataset) and another in which each subsystem is sampled independently (the "product" dataset).

Then, each of the datasets is fed to an ANN, the two averages in Eq. (1.21) are calculated,
and the weights of the ANN are updated to maximize the loss (hence, maximize the estimation of
M ). This process is repeated until the loss stops improving andM saturates (Fig. 2.2).

Once we have a trained neural network, we feed it with a new, independent testing dataset. We
estimateM on the testing dataset. The estimation is plugged into Eq. (2.2). We use the trained
network as the initial state of the neural network for the same subsystem under different conditions
(temperature, density).

Figure 2.2: The flow of MICE. The simulations are used to generate a marginal dataset
and a joint dataset. The specific architechture of the ANN shown here was used for
subsystem pairs larger than 32× 32. Smaller subsystems used 12 convolutional layers.
The figure is adapted from [3].
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Characterizing the entropy of a system is a crucial, and often com-
putationally costly, step in understanding its thermodynamics. It
plays a key role in the study of phase transitions, pattern forma-
tion, protein folding, and more. Current methods for entropy esti-
mation suffer from a high computational cost, lack of generality,
or inaccuracy and inability to treat complex, strongly interacting
systems. In this paper, we present a method, termed machine-
learning iterative calculation of entropy (MICE), for calculating the
entropy by iteratively dividing the system into smaller subsys-
tems and estimating the mutual information between each pair
of halves. The estimation is performed with a recently proposed
machine-learning algorithm which works with arbitrary network
architectures that can be chosen to fit the structure and sym-
metries of the system at hand. We show that our method can
calculate the entropy of various systems, both thermal and ather-
mal, with state-of-the-art accuracy. Specifically, we study various
classical spin systems and identify the jamming point of a bidis-
perse mixture of soft disks. Finally, we suggest that besides its
role in estimating the entropy, the mutual information itself can
provide an insightful diagnostic tool in the study of physical
systems.

entropy estimation | mutual information | machine learning | jamming

Entropy is a fundamental concept of statistical physics whose
computation is crucial for a proper description of many phe-

nomena, including phase transitions (1–3), pattern formation (4),
self-assembly (5–7), protein folding (8–10), and many more. In
the physical sciences, entropy is typically interpreted as quantify-
ing the amount of disorder of a system or the level of quantum
entanglement. Entropy is also a fundamental concept in other
fields of thought—statistical learning, economy, inference, and
cryptography, among others (11). There it is used to quantify the
complexity of statistical distributions. Mathematically, entropy is
defined as

S =−kB

∑

i

pi log pi , [1]

where pi is the probability that the system is in the i th microstate,
and kB is the Boltzmann constant. For convenience, in what
follows we work with units where kB = 1.

Analytic calculation of the entropy is achievable only for sim-
ple, weakly interacting systems. Experimentally, the entropy can
be obtained, for example, by measuring the temperature (T )
dependence of the specific heat down to low temperatures (12).
Computationally, for all but the simplest systems, a direct calcu-
lation of the entropy is computationally infeasible, as it requires
computational resources that grow exponentially with system size
(13, 14). For example, a classical numerical approach involves
integrating the specific heat, which is inferred from energy
fluctuations, down to low temperatures (12). This method is com-
putationally costly and can suffer from inaccuracies for systems
with numerous ground states at low T . Other methods estimate
directly the free energy (15) or embrace additional knowledge on
the system, for example from experiment, to reduce the entropic
contribution to a manageable computational task (16).

Recently, we and others have shown that using compres-
sion algorithms one can compute, to a good approximation, the
entropy of fairly complex systems (8, 17, 18). This method is
based on Kolmogorov’s theorem that states that the optimal com-
pression of data drawn from a distribution is bounded by the
distribution’s entropy (19, 20). The compression-based methods
capitalize on decades of research in computer science, which
resulted in fast and efficient compression algorithms, such as the
Lempel–Ziv algorithm or variants of it (21) which are widely avail-
able. However, these algorithms treat data as a one-dimensional
(1D) discrete string, and manipulating higher-dimensional data
into a 1D structure results in information loss. For example, it was
recently demonstrated that compression-based algorithms mises-
timate the entropy of systems with long-range correlations and fail
to capture delicate transitions in complex systems (17).

Here, we introduce a generic approach which we term
machine-learning iterative calculation of entropy (MICE). Our
method improves on existing methods in a number of ways: First,
it provides state-of-the-art accuracy. Second, it is scalable, in the
sense that its computational cost grows logarithmically with sys-
tem size. Third, it provides estimations of the actual entropy,
with physical units, without additive or multiplicative correc-
tions and with no fitting parameters. Fourth, since the underlying
computations are performed with artificial neural nets, MICE
can be naturally applied to various physical systems by adjusting
the network architecture, rather than the digital representation
of the system (e.g., flattening high-dimensional systems to one-
dimensional byte arrays as in refs. 8, 17, and 18). Finally, it can
be applied to both discrete and continuous distributions.

Below we test MICE on several canonical systems: the Ising
model on both square and triangular lattices, the XY model
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with and without an external magnetic field (H ), and an ather-
mal system of bidisperse soft disks in two dimensions (2D). We
show that our approach provides state-of-the-art accuracy and
provides insightful information about the physics as a byproduct.

The Method
Entropy and Mutual Information. In thermodynamics, entropy is
considered to be an extensive quantity, i.e., a quantity that scales
linearly with system size. This is only approximately true. In fact,
the entropy is strictly subextensive. The quantity that measures
the subextensiveness is called mutual information.

To be precise, the mutual information (M) between two
random variables A, B is defined by the relation (11)

S(A,B) =S(A) +S(B)−M(A,B), [2]

where S(A),S(B) are the entropies of A and B , respectively,
and S(A,B) is their joint entropy. It is easy to show that
M(A,B) is strictly nonnegative (11). Therefore, if we think of
A and B as two halves of a thermodynamical system, this equa-
tion tells us that the entropy of the joint system is smaller than
the sum of the entropies of its components.

Eq. 2 is the basic relation on which our method relies. It allows
calculation of the entropy of a large system by estimating the
entropy of each of its halves and the mutual information between
them. Since the computational cost of estimating the entropy
grows exponentially with the system size, the latter might be a
significantly easier problem than the former.

With this in mind, consider a large physical system X0, of vol-
ume V0, which we divide into two equal halves. If we deal with
translationally invariant systems, as we assume for the remainder
of this work, the two halves are statistically indistinguishable, and
we denote both of them by X1 (Fig. 1A). With this notation, Eq.
2 takes the form

S(X0) = 2S(X1)−M(X1), [3]

where M(Xk ) is a shorthand notation for the mutual informa-
tion between two neighboring subsystems Xk . Each of the halves
can be further divided into two statistically indistinguishable
halves, and this process can be iterated arbitrarily many times.
After m iterations, we find that

s(X0)≡ S(X0)

V
= sm − 1

2

m∑

k=1

M(Xk )

Vk
, [4]

where Vk = 2−kV0 is the volume (or area in 2D) of the kth sub-
system, and sm ≡S(Xm)/Vm is the specific entropy of the mth
subsystem.

Eq. 4 decomposes the entropy S into contributions from dif-
ferent length scales. At very short scales, the iteration should be
carried out only until Xk becomes small enough that its entropy
can by directly calculated, either by brute-force enumeration or
by using other methods. Since Vk decreases exponentially with
k , the number of needed iterations is logarithmic in the system
size. In many cases the actual value of the first term in the right-
hand side of Eq. 4, i.e., the entropy of the smallest subsystem, is
an uninteresting additive constant with no physical significance
and can be ignored.

In summary, the crux of our method is replacing the problem
of evaluating the entropy by that of calculating the mutual infor-
mation between subsystems of varying sizes (Fig. 1A). It is left
to understand how to actually calculate the mutual information,
which is the topic of the next section.

Estimating the Mutual Information. Recently, Belghazi et al. (25)
proposed a method to calculate the mutual information between
high-dimensional random variables with neural networks. Their

A B

C

D

Fig. 1. (A) Schematic illustration of MICE. By dividing the system into
smaller subsystems and calculating the mutual information between them
we reconstruct the entropy of the whole system. The entropy of the small-
est subsystem is calculated directly by enumeration. Dashed red lines mark
the length of interface (`i) between two subsystems in the ith iteration. (B–
D) The difference between MICE estimations of s and known benchmarks.
Note that the units are chosen such that kB = 1. We present three estimation
methods: MICE, naive extrapolation from a system of 16 spins (main text),
and a compression-based method (8). MICE shows superior performance in
all cases. B–D show results for (B) the ferromagnetic Ising model on a square
lattice, (C) the antiferromagnetic Ising model on a triangular lattice, and
(D) the XY model on a square lattice. In B and C we benchmark against
known analytical results for infinite systems (22, 23), respectively. In D, we
benchmark against the calculation of ref. 24.

idea is simple and elegant: Following a theorem by Donsker
and Varadhan (26), the mutual information between two vari-
ables, A and B , can be expressed as a solution to a maximization
problem:

M= sup
θ∈Θ

[
〈Fθ(A,B)〉PA,B

− log
〈
eFθ(A,B)

〉
PA×B

]
. [5]

Here, FΘ :A×B→R is a family of functions parameterized
by a vector of parameters θ, PA,B is the joint distribution of
A and B , and PA×B is product of their marginal distributions.
In our case, since A and B are subsystems of a bigger system,
〈·〉PA,B

means averaging over samples of A and B taken from the
same sample of the bigger system, while 〈·〉PA×B

means averag-
ing over samples of A and B taken independently. Heuristically,
the reason that this representation works is that the mutual
information measures how much the joint distribution differs
from the product of marginal distributions. In fact, M(A,B)
equals the Kubleck–Leibler divergence between these two
distributions (11).

While there is much to be said about Eq. 5, for the purpose
of this work it suffices to note that it reduces the problem of
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calculatingM to an optimization problem, which naturally sug-
gests the prospect of using artificial neural networks (ANNs) to
parameterize the function Fθ . This is the core idea of Belghazi
et al. (25), which we adopt. In machine-learning language, Eq. 5
is taken to be the loss function of the network.

For the complete implementation details see SI Appendix, sec-
tion 1. In broader strokes, the process is as follows: First, using
standard methods, a sizable dataset of samples of the system
is produced. Then, for each size of subsystem pair we gener-
ate two datasets: one in which the two subsystems are taken
from the same larger sample (the “joint” dataset) and another
in which each subsystem is sampled independently (the “prod-
uct” dataset). Then, each of the datasets is fed to an ANN, the
two averages in Eq. 5 are calculated, and the weights of the ANN
are updated to maximize the loss. This process is repeated until
the loss stops improving and M saturates. We found the expo-
nential moving average useful to reduce noise when estimating
M over the final training epochs. Finally,M is calculated from
the trained ANN by averaging Eq. 5 over a separate dataset,
different from the one used to train the network.

Results
To demonstrate the performance and versatility of MICE we
chose four systems representing different classes of collective
behavior: 1) the 2D ferromagnetic Ising model on a square lattice
with coupling constant J = 1, a canonical example of a system
with a second-order phase transition; 2) the antiferromagnetic
Ising model on a triangular lattice (J =−1), a canonical exam-
ple of a frustrated system with degenerate ground states (27);
3) the continuous XY model on a square lattice, which has a
continuous symmetry and features a topological phase transition
(27); and 4) finally, an athermal system of a bidisperse mix-
ture of elastic particles which undergoes a jamming transition
when its density is increased above a certain threshold (28). For
all these systems our method achieves state-of-the-art perfor-
mance. In addition, in some cases it provides physical insights
about the structure and scales of the emergent behavior, as
discussed below.

Spin Models. All three spin models were simulated for a system
of 64× 64 spins with periodic boundary conditions. The distribu-
tion was sampled using standard, well-established methods: The
Ising models were simulated using Metropolis Monte Carlo sim-
ulations as in ref. 8 and the XY model was simulated using the
Wolff algorithm as in ref. 29 (SI Appendix, section 2).

Lattice systems can naturally be represented as 2D arrays
(the triangular lattice can be represented on a square lattice
with diagonal interactions) (27). This allows the usage of one
of the most successful ANN architectures to parameterize F of
Eq. 5: feedforward convolutional nets (30, 31). We use one to
three convolutional layers, each of 8 to 16 filters of size 3× 3,
followed by two fully connected layers, using RELU (rectified
linear unit) activation, implemented in PyTorch (32). Complete
details about the hyperparameters for each model are given
in SI Appendix, section 1. We calculate M between subsys-
tems of sizes ranging from a pair of spins to system size. The
entropy of a single spin was trivially calculated using brute-force
enumeration.

The deviations of our entropy estimations from known results
(22–24) are shown in Fig. 1 B–D. In all three cases we see impres-
sive quantitative agreement, to a fraction of kB, with no fitting
parameters. We also benchmark our results against the recently
proposed compression-based algorithm (8). Relying on highly
optimized code and treating the system as effectively 1D, the
compression-based algorithm is obviously much faster, about one
to two orders of magnitude in terms of runtime. However, while
it captures the trend, it offers substantially inferior accuracy in
some cases. For example, the low-temperature behavior of the

antiferromagnetic Ising model (Fig. 1C) is governed by a thermo-
dynamic number of ground states with long-range correlations.
There, the error of MICE is smaller by an order of magnitude
than that of the compression algorithm method.

It is insightful to compare the performance against another
very efficient, albeit naive, estimation of s—calculating s for
a small collection of spins by direct enumeration and neglect-
ing the mutual information (i.e., the last term in Eq. 4). In
other words, this is assuming that S is extensive. This estima-
tion, which we refer to as “naive extrapolation,” provides only
slightly worse accuracy than the compression method, as seen
in Fig. 1. In all cases, MICE provides the most accurate calcu-
lation with a maximal error of 0.06 kB per spin for all of the
systems and across all temperatures. In SI Appendix, section 3 we
also use MICE to estimate the heat capacity, showing it outper-
forms the standard method based on energy fluctuations, since
the latter is hard to sample at low temperatures or near a phase
transition.

As presented above, our method requires training an ANN for
every temperature. This is computationally costly. For example,
a single training run for calculatingM between two 64× 32 sys-
tems of the ferromagnetic Ising model takes several minutes on a
standard personal computer. If we were to generate all points in
Fig. 1 in this method, the computation time would reach 1 to 2 d.
However, drastic improvements in the calculation time can be
obtained by leveraging the similarity of the systems between dif-
ferent temperatures. This is done by using the weights (Θ in Eq.
5) that were obtained by training for a given temperature as the
initial conditions of the training process of a different tempera-
ture or size. This technique is ubiquitous in the field of machine
learning, where it is called “transfer learning” (33). In our case it
reduces the training time by one to two orders of magnitude. For
additional information see SI Appendix, section 1F.

Mutual Information as a Probe. The main purpose of MICE is pro-
viding an accurate estimation of S . In addition, the byproduct
of the calculation, namely the mutual information between sys-
tems at different sizes, which is essentially a decomposition of
the entropy to contributions from different length scales, can be
an interesting observable in its own right. Here we briefly discuss
how it captures insightful aspects of the thermodynamics and can
be used to assess the accuracy of the MICE against known lim-
iting behaviors. In passing we note that the mutual information
between different scales was shown to be informative in analysis
of disordered systems (34, 35).

First, we look at M between subsystems at various sizes for
the ferromagnetic Ising model on a square lattice, plotted in
Fig. 2.Mmanifestly shows the phase transition (36, 37). Indeed,
dM/dT peaks exactly at the theoretical infinite-system critical
temperature Tc = 2.269J (Fig. 2B).∗

In addition, the accuracy of our calculation can be corrobo-
rated against known limits at both high and low temperatures.
For T�Tc , all spins essentially point in the same direction.
To be precise, in the low-T limit the ground-state entropy
of the whole system, or any subsystem, is exactly log(2). This
implies that the mutual information between any two subsys-
tems is also log(2) which we indeed observe for all subsystem
sizes (Fig. 2A).

For T�Tc , the mutual information between two subsystems
can be obtained by a rigorous high-T expansion. The calcula-
tion is straightforward but lengthy, and for the sake of brevity its
details are given in SI Appendix, section 4A. However, the result
is short and intuitive: The leading-order behavior at high T is

* In second-order phase transitions the entropy is continuous but its temperature deriva-
tive (which is proportional to the heat capacity) (1) diverges. Since S is a sum overM(Xi)
(Eq. 4), we expect dM/dT to diverge, rather thanM.
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A B

C D

Fig. 2. Analyzing M for the 2D Ising model on a square lattice for dif-
ferent subsystem sizes. (A) M complies with two known limits: At low
temperatures M= log(2). At high temperatures M approaches the theo-
retical value of Eq. 6, as shown in Inset (dashed line). (B) The derivative of
the mutual information peaking at the theoretical value Tc ≈ 2.269J (23).
(C)M normalized by the interface length for varying subsystem sizes (i.e.,
number of spins). For visual clarity, all curves are normalized to start at unity
at zero area. (D)M per area as function of area for the ferromagnetic Ising
model on a square lattice (squares) and the antiferromagnetic triangular
lattice model (triangles) at various temperatures. M decays faster for the
ferromagnetic model, as the correlation lengths are much shorter.

M=
1

2

`

T 2
, for Ising model

M=
1

4

`

T 2
, for XY model,

[6]

where ` is the interface size between the subsystems, i.e., the
number of spins in one system that directly interact with spins in
the other. As seen in Fig. 2 A, Inset, our method shows excellent
agreement with this prediction, again with no fitting parameters.
In passing we note that Eq. 6 is akin to the famous area law in
quantum entanglement (38).

That is, when T >Tc , the mutual information per interface
length is independent of the system size, as expected. However,
for T <Tc the entropy is not extensive, andM/` decays quickly
with the size of the subsystem (Fig. 2C). This means that the
summands in Eq. 4, which areM normalized by the 2D volume
(i.e., area), decay quickly for large subsystems. This is visual-
ized in Fig. 2D. Fig. 2D also shows that in the antiferromagnetic
model the summands decay more slowly, which is expected since
it features long-range correlations.

Next, in Fig. 3 we examine the entropy and the mutual infor-
mation in the XY model. At high temperatures M decays
as described in Eq. 6. Below the critical temperature, the
famous Kosterlitz–Thouless transition temperature TKT = 0.8J ,
M approaches a T -independent plateau for H 6= 0 and diverges
logarithmically when H = 0. This divergence is due to the contin-
uous degeneracy of the XY model, which is lifted in the presence
of an external field. In the transition between these limits, M
features a pronounced peak, which becomes smaller and shifts
to higher temperatures with increasing H (Fig. 3C).

This rich behavior of M can be understood in simple terms.
The high-temperature behavior is accurately described by Eq. 6,
which is a further corroboration of our method (Fig. 3B). The
low-temperature behavior can be understood, much like in the
case of the Ising model, in terms of collective behavior. For
H 6= 0 and T <TKT all spins are mostly aligned with the field,
even if it is relatively small, because of the broken symmetry.

In this case, spins fluctuate mildly around their ground state
and a harmonic approximation can be made. Within the har-
monic approximation the mutual information,Mh (the subscript
h stands for harmonic), can be obtained analytically in terms
of block determinants of the Hamiltonian, a derivation which
is given in detail in SI Appendix, section 4B. The results of this
calculation are presented in Fig. 3C and show good quantitative
agreement.

Finally, we remark that the generic behavior of M—a T -
independent plateau at low T followed by a peak and a power-
law decay at large T—is also present in very small systems. In
fact, even a system of two spins behaves in a qualitatively similar
way, although the transition temperatures between the regimes
are quite different due to the collective behavior of the spins
(Fig. 3D and SI Appendix, section 5).

A Continuous, Out-of-Equilibrium System
One of the main advantages of MICE is that it is very versatile in
terms of the systems it can operate on. As long as a well-defined
distribution exists and samples can be drawn from it, and as long
as the system can be digitally represented in a manner compati-
ble with ANNs, MICE should be, at least potentially, applicable.
In particular, the scheme presented above can be applied to out-
of-equilibrium systems, whose entropy calculation is a challenge
both technically and conceptually (8, 15, 17, 18, 39, 40). Clearly,
the result of MICE will be an estimate of the entropy defined in
Eq. 1, which is the information-theoretic definition of entropy.
Relating the result to other thermodynamic properties would
depend on the details of the system, which is always the case
in calculating thermodynamic properties of out-of-equilibrium
systems.

Jammed solids are a prominent class of out-of-equilibrium sys-
tems whose entropy plays a crucial role in their dynamics (41). In
these systems the entropy, which stems from steric interactions,
is geometric in nature and measures the number of ways the

A B

DC

Fig. 3. Analysis of the XY model under the external field (H) using MICE.
(A) Entropy as a function of temperature for various external fields. Inset
shows ds/dT , and TKT is marked with a dashed line. (B) Mutual information
between two systems of size 32× 16 spins, for varying fields. The arrow
marks the peak inM(H = 0) at Tmax. The blue line is the high-temperature
limit, Eq. 6. (C) Two features of the curves in B are replotted: the low-T
plateau value (evaluated at T = 0.1J), compared to the analytically calcu-
lated values at T→ 0 in the harmonic approximation,Mh (black line). Tmax

is plotted in orange circles. (D) Exact numerical calculation ofM between
two isolated spins for varying H, showing qualitatively similar behavior to
that in B (although note that the temperature axis is logarithmic, unlike
in B).
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system’s constituents can be ordered in space without overlap.
When this depends sensitively on the density, jamming occurs.
The jamming transition is also important as it is thought that
understanding it would guide us in understanding one of the
most important open problems in condensed-matter physics—
the glass transition, which is also intimately related to entropic
effects (41–43).

As a representative example, we study here a bidisperse mix-
ture of soft disks. This system exhibits a jamming transition at
high densities (44). Several works have attempted to identify the
jamming transition of this system, using dynamic properties such
as the jamming length scale or the effective viscosity (45) and
using static properties such as pair correlations or fraction of
jammed particles (44, 45). Recently, Zu et al. (17) tried to mea-
sure the entropic signature of the jamming transition and have
shown that compression-based methods have failed to do so. The
authors of ref. 17 have generously shared their dataset with us,
to test our method on, which we do below.

The system is an equimolar bidisperse system of disks with
one-sided harmonic interactions (Fig. 4A). The simulation is per-
formed in a finite box with periodic boundary conditions. The
area density of the particles, φ, is a control parameter which is
changed by changing the number of particles, N . Further details
about the simulation are given in SI Appendix, section 6. The sys-
tem is expected to undergo a jamming transition at φJ ≈ 0.841
(28, 45).

There are a few differences between this system and the spin
models discussed above. First, it is not a lattice system with
discrete states. Rather, here the state space is continuous, param-
eterized by the positions of the particles. This requires a careful
treatment of the discretization scheme. The choice of discretiza-

tion scheme, and specifically the spatial resolution of discretiza-
tion, affects the results in a nontrivial manner. Finally, in the
analysis of the spin models we employed MICE on subsystems of
all sizes, between one spin and the whole system. However, the
soft disk systems are so large that doing so will be both imprac-
tical and unnecessary (adequate resolution requires ∼3× 106

pixels, as discussed below). Before describing the results, we
briefly discuss how these challenges are resolved, since they are
common to many physical systems of interest, both in and out of
equilibrium.

Continuous Systems (Differential Entropy). Since the system is
continuous, the summation in Eq. 1 should be replaced by
integration:

S̃ =−
∫

p(x ) log p(x )dx . [7]

This definition is known as differential entropy. Note that
log p(x ) is ill defined since it depends on the choice of units of x
in a nonmultiplicative manner.

This nonmultiplicative component, which depends logarithmi-
cally on the length unit, is fundamentally related to the fact that
the digital representation of the system is discrete and thus the
differential entropy of Eq. 7 differs from the discrete entropy of
Eq. 1 by a factor that diverges logarithmically with the resolution
of the discretization. For a detailed derivation see SI Appendix,
section 7.

Moreover, we also show there that, quite conveniently, the
representation of S in terms of Eq. 4 offers a well-defined way to
remove this divergence. While S̃ of a continuous system depends
logarithmically on the resolution,M becomes independent of it

BA C

D

F

E

Fig. 4. (A) Snapshots from the bidisperse mixture simulation below and above the jamming transition density (φJ). (B) A blowup of the marked region in A.
We discretized the system (colored circles) as Boolean 2D images (black and white pixels). Top and Bottom show a spatial resolution ofR= 5 andR= 9.5,
respectively. The pixels are the input to MICE. (C) The effect of discretizing with various resolutions (R) and various densities:M between two subsystems
of size 2σ× 1σ (Left) and 4σ× 2σ (Right). At high resolutions,M becomes independent of R. Green and red arrows indicate the resolutions represented
in B, Top and Bottom, respectively. Different markers correspond to different densities; see key in E. (D)M/` as a function of the area of the subsystem (A)
at various densities; see key in E. For large enough `,M becomes linear in `. (E)M/A as a function A at various densities.M becomes negligible for large
subsystems. The dashed colored lines represent the extrapolation of Eq. 9, based on the subsystem at the size represented by the black dashed line. (F) The
density dependence of the excess entropy. Inset shows the results of MICE (blue) and the linear trend of s̃/N at low densities (dashed orange line). For visual
clarity, the linear trend in φ is subtracted in the main panel. The dashed black line represents the theoretical jamming transition point.
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in the limit of very fine resolution. In fact, the necessary resolu-
tion is such that no physically relevant information is lost by the
discretization, i.e., when all continuous configurations that map
to the same discrete representation are equiprobable.

Therefore, when we estimate S according to Eq. 4, we can
avoid the logarithmic divergence simply by omitting the first term
in the right-hand side. That is, in what follows we do not present
s̃ but rather

∆s̃ ≡ s̃ − S(Xm)

Vm
=−

m∑

k=1

M(Xk )

2Vk
. [8]

As a side note, we remark that the omitted term, S(Xm)/Vm ,
is simply the entropy density of the smallest subsystem. It cor-
responds to the entropy of an “ideal gas” composed of copies
of the smallest subsystem. Subtracting the entropy of an ideal
gas is common in entropy calculations of thermodynamic systems
(17, 39). The result of the subtraction is commonly referred to as
“excess entropy.”

Discretization. Since convolutional ANNs show state-of-the-art
capabilities in extracting information from images, we discretize
phase space by mapping a state of the system to a 2D image,
whose pixels are black if they contain a center of a particle
(Fig. 4B).† The spatial resolution of the image is a hyperpa-
rameter of our method. We measure the resolution with the
dimensionless number R=σ/p, where p is the spatial extent of
a pixel and σ is the diameter of the smaller disk. Based on the
discussion above, we expect the estimation ofM to converge to
a constant value when R is increased. This is indeed the case,
as demonstrated in Fig. 4C. In what follows, we use R= 10, for
whichM is converged. We note that in terms of resources, the
computational cost of discretizing the system is negligible com-
pared to simulating the system or training the ANN. In addition,
as shown below, the ANN does not have to be applied on the
whole system, so a fine discretization does not lead to a memory
bottleneck, at least not in 2D.

Extrapolating the Mutual Information. The resolution required for
convergence necessitates∼106 pixels to discretize the whole sys-
tem. Feeding such a large image to an ANN might be possible,
but requires unreasonable computational resources for the task
at hand. Luckily, this is not necessary.

As discussed above, for large enough subsystems, that is, scales
much larger than the longest correlation length of the system, we
expectM to grow linearly with the interface length (Fig. 2C). In
precise terms, we expect

M(Xk ) =
`k
`n
M(Xn). [9]

If we assume this is obeyed for all systems larger than Xk , this
relation can be used to replace the summands in Eq. 4, and
the summation can be done analytically without calculations on
subsystems larger than Xk . Fig. 4D shows that this happens for
subsystems of length ∼4σ. In Fig. 4E we show that Eq. 9, based
on the values of M for this size, quantitatively reproduces the

†Technically, pixels are black if they contain a center of one or more particles, although
this never happens in the resolutions we work with.

values of the summands of Eq. 4 for sizes larger than 4σ, i.e., a
2D volume of A= 16σ2.

Results. We are now in position to calculate the entropy of the
whole system for various densities. Assuming that Eq. 9 is sat-
isfied for n >m , Eq. 4 can be analytically summed, yielding (SI
Appendix, section 8)

s = s(xm)− 2
M(Xm)

Vm
. [10]

Fig. 4 F, Inset shows ∆s̃/N as a function of φ. It is seen that at
low densities ∆s̃ depends roughly linearly on the density (dashed
orange line). To emphasize the phase transition, in the main
panel of Fig. 4F we plot the same data with this linear trend sub-
tracted. The change in the behavior of ∆s̃ around the expected
jamming point is evident. Importantly, we remind the reader that
compression-based entropy estimations were less successful in
showing this transition (section 3.5 of ref. 17). A more detailed
comparison with the results of ref. 17 is given in SI Appendix,
section 9.

Discussion and Conclusion
Machine-learning algorithms in general, and neural networks
in particular, offer an effective tool to identify patterns in
high-dimensional data with complex correlation structure. We
have shown that these capabilities can be leveraged to tackle
another important challenge—computing the entropy of physical
systems.

The crux of the method is mapping the problem of entropy
calculation to an iterative process of mutual information esti-
mation. By doing so we were able to estimate the entropy
of canonical statistical physics problems, both discrete and
continuous, both in and out of equilibrium, outperforming
compression-based entropy estimation methods. Finally, we
demonstrated that MICE naturally allows us to decompose
the entropy into contributions from different scales, provid-
ing an insightful diagnostic for the thermodynamics of physical
systems.

We surmise that MICE could be a promising tool for the study
of many important systems, such as the configurational entropy
of amorphous solids (46), the entropy crisis of glassy systems
(42), entropy of active matter (40), and more. The main limit
of the proposed method would depend on the minimal system
size for which Eq. 9 applies, which determines the largest input
for which an ANN should be trained. This is the dominant fac-
tor in the computational cost of our method. In addition, we
believe that with adequate modifications MICE could be used
on quantum systems, for which the mutual information is fun-
damentally related to entanglement of quantum states (47). A
relevant direction could be the extraction of entropy from quan-
tum Monte Carlo simulations. These directions will be explored
in future works.

Data Availability. All study data are included in this article and SI
Appendix.
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Supporting Information Text12

1. MICE implementation details13

A. Data preprocessing and augmentation. Input features were normalized between values -1 and 1. For the soft disk system,14

this means that empty pixels are set to −1 and pixels which contain a particle center are set to 1. Since all our systems are15

symmetric under reflections, we performed data augmentation by reflecting both vertically and horizontally. In the data of16

the XY model without an external field, a global random phase was also used for data augmentation. In addition, due to17

translational symmetry one can sample subsystems anywhere within the larger system. Combining all these, a single snapshot18

of 64x64 spins can generate about 15,000 training samples.19

B. Network Architecture. Our method was implemented using the PyTorch library (1). For subsystems of input size larger20

than 32× 32 we used three convolutional layers with 16 filters of size 3× 3 each and a rectified linear unit (ReLU) activation.21

For smaller subsystems, we use only two convolutional layers. For subsystems of size 4× 4 or smaller, only one convolutional22

layer is used. The convolutional layers are followed by two fully connected layers, with k
2 and 1 output neurons, respectively,23

where k is the number of output neurons in the last convolutional layer. The batch size for training was 128.24

Fig. S1. The flow of MICE. The simulations are used to generate a marginal dataset and a joint dataset (see main text for definition) dataset. The specific architechture of the
ANN shown here was used for subsystem pars larger than 32× 32. Smaller subsystems used 1− 2 convolutional layers, as detailed in Sec. 1B.

C. Noise Reduction. The output of the neural network (ANN) is averaged over the marginal and joint distributions to give25

a bound on the mutual information (see Eq. (5) of the main text). As the network learning process progresses, the bound26

becomes tighter. However, at each iteration the averaging is performed over a small batch of 128 samples. Therefore, the27

network’s output is extremely noisy. To smooth the results we use a moving exponential average:28

〈M〉i+1 = 〈M〉i + α
(
Mi+1 − 〈M〉i

)
. [S1]29

whereMj is the output of the network after j optimization iterations, and 〈M〉i is our averaged estimation after i iterations,30

see Fig. S2. Throughout the manuscript we used the exponential averaging with α = 10−3.31

D. Validation. For estimatingM we implemented the standard scehme of using a validation set. Two independent datasets32

with ratio of 80-20 were created before training. The network was trained over the large (training dataset), and the training33

phase was terminated when theM estimation on the training set stopped increasing. M was estimated over the independent34

validation set as well, and this value was used for subsequent calculations. By comparing the estimation ofM over the training35

and validation sets, one can verify that the network did not overfit the data.36

E. Dataset size. For the spin models we used a dataset of 5000 samples of a 64× 64 system. An exception is the XY model37

with an external field where we used 2000 simulations. For the soft disk system we used a set of 100 simulations. In general,38

for the systems considered in the manuscript we typically needed about 104 − 105 samples (obtained from the the ∼ 103 actual39

samples by data augmentation, see A above) to achieve reasonable convergence.40
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Fig. S2. Noise reduction. The raw output of the network (blue) and an exponential average with α = 10−3 (green) are shown during a typical training loop. In addition, we
demonstrate another noise reduction method, used by the original authors of (2), a moving average with a window size of 100 iterations (orange).

F. Transfer Learning. When initiating the network weights at random the resulting estimation ofM is roughly zero. During41

training it increases until a plateau is reached. For our choice of hyperparameters this can take a few thousand training42

iterations, cf. Fig. S3. This process can be expedited if the network is not initialized at a random initial condition but instead43

the weights of a network that was trained for a different system are used, a technique called “Transfer Learning”44

This can be done in a number of ways - e.g. transfer learning across temperatures or the sizes of the subsystem. In the main45

text we only used transfer learning across different temperatures. In Fig. S3 we show the result of training with and without46

transfer learning, which can reduce training time by 1-2 orders of magnitude. We note that transfer learning works better47

when we first train on high T and then transfer to lower T , similar to simulated annealing strategy in optimization.48

We note that transfer learning across subsystem size is slightly more tricky since the input size to the ANN is different. One49

simple-minded way to overcome this is to pad the smaller subsystems with zeros, which gives reasonable results, cf. Fig. S3B.50

This is an interesting direction for future research, which we did not further explore. Transfer learning across subsystem size51

was not used in the main text.52
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T/J
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M

C

No Transfer

High to Low

Low to High

Fig. S3. Effect of transfer learning. (A)-(B) Learning process as function of iteration for various subsystem sizes. (A) Without transfer learning (i.e. random initial weights for each
ANN). (B) With transfer learning from one subsystem size to another.M plateaus at the same level with or without transfer learning, but the number of iterations needed to
reach the plateau changes drastically. (C)M as function of temperature for 16× 16 subsystem of the 2d ferromagnetic Ising model. Adding transfer learning from high to low
temperature improves the results dramatically while transfer learning in the opposite direction is not effective. All trainings were done for 3000 iterations at every temperature.

2. Spin Model Simulations53

Sampling the distribution of the Ising systems was preformed using standard Monte-Carlo sampling.54

Sampling the distribution of the XY simulation was performed using the Wolff algorithm implemented in the c++ library55

provided in Ref. (3). To generate uncorrelated samples the mean cluster size at each temperature, c, was calculated and the56

simulation was sampled every 2/c steps. That is, each spin was flipped twice on average between two subsequent samples at all57

temperatures.58
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3. Specific Heat Estimation Using MICE59

A standard method of estimating the entropy of thermodynamic systems is to integrate the specific heat from low temperatures.
This method relies on the relations

cV = T
dS

dT
, and [S2]

cV = 〈E
2〉 − 〈E〉2
T 2 , [S3]

where cV is the heat capacity, E is the energy and 〈·〉 denotes thermal averaging. S(T ) can be calculated using Eq. (S3) and60

integrating the energy fluctuations from zero temperature to T .61

0 1 2 3 4
T/J

0

1

2

3

c V

A

σ2
E/T

2

MICE

Theory

0 1 2 3 4
T/J

0.0

0.1

0.2

0.3

c V

B

Fig. S4. Estimating cV using energy fluctuation estimation, (Eq. (S3), blue), and MICE (Eq. (S2), orange), compared to the theoretical value (black). (A) 2D Ising model (B)
2D anti-ferromagnetic Ising model.

Alternatively, one take the inverse direction: using the estimation of S, as calculated by MICE, together with Eq. (S2) to62

estimate cV . In Fig. S4 we compare this estimation of cV (orange) to the estimation of cV using energy fluctuations (Eq. (S3),63

blue). It is evident that the energy fluctuations overestimate cV in the 2D ferromagnetic Ising model near the phase transition,64

and at low temperatures in the anti-ferromagnetic triangular lattice, which features high degeneracy of low energy states.65

4. Analytic Calculation of M at high and low temperature limit for spin models66

A. High temperature. Here we derive Eq. (6) of the main text by a rigorous high-T expansion of the partition function and67

marginal probabilities. Physically this expansion relies on the fact that at high temperatures correlations become local. At68

high temperature we explicitly obtain the area law,M(A,B) ∝ `, stating thatM is proportional to the area ` (or length in69

two dimensions) of the interface between regions A and B, rather their volume.70

The mutual information between subsystems A and B, whose union is A ∪B = X, is defined as:71

M(A,B) = S(A) + S(B)− S(X), [S4]72

where the entropy of a subsystem A is given in terms of the marginal probability:73

S(A) = −
∑

α

PA(α) logPA(α). [S5]74

Here, α labels microstates of A. For the spins models, the microstates are given in terms of the configurations of spins za, a ∈ A.
We assume that the entire system X under consideration is described by an equilibrium distribution:

PX(z) = e−βE(z)

Z
, Z =

∑

{zi=±1}

e−βE(z) . [S6]

Here and in what follows boldface letters (e.g. z) denote vectors. The marginal distribution of subsystem A is obtained by75

tracing out the spins in its complement, PA = TrB PX .76

We proceed by an explicit evaluation ofM at high temperature for the Ising model:

EIsing(z) = −J
∑

〈i,j〉

zizj −H
∑

i

zi , zi = ±1 . [S7]
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The expansion of the partition function in powers of β up to second order is

Z =
∑

{zi=±1}

(
1− βE(z) + 1

2β
2E(z)2 + . . .

)
= 2N + 1

2β
2


J2


∑

〈i,j〉

1


 2N +H2

(∑

i

1

)
2N

+O

(
β3)

= 2N
[
1 + 1

2β
2 (J2Nlinks +H2N

)]
+O

(
β3) , [S8]

where
∑
〈i,j〉 1 = Nlinks is the total number of links and

∑
i
1 = N is the number of sites. In what follows we omit the external77

field (H) for clarity and conciseness of presentation, and only mention its effect in the end result.78

Next, we perform a high temperature expansion up to order β2 of the marginal probability79

PA(zA) =
∑

zb

P (zA, zB) =
∑

zB

1− βE(zA, zB) + 1
2β

2E2(zA, zB)
Z

+O
(
β3) . [S9]80

Here zA is fixed and spins zB in B act like an environment for A and are traced out.81

Tracing out the first order term in the numerator of Eq. (S9) annihilates any terms that involve at least one spin in B.82

Therefore, the first order term yields simply the energy of subsystem A,83

EA(zA) = −J
∑

〈a,a′〉∈A

zaza′ . [S10]84

Tracing over the second order term in the numerator of Eq. (S9) involves a double sum over neighbors
∑
〈ij〉
∑
〈i′j′〉 zizjzi′zj′ .85

The only combinations of i, j, i′, j′ that are not annihilated by tracing out are:86

1. i, j, i′, j′ ∈ A. Summation over these quadruplets yields EA(zA)2.87

2. i, j, i′, j′ ∈ B. Summation over these quadruplets yields J2NB
links where NB

links is the number of links in B.88

3. i ∈ A, j ∈ B and 〈i, j〉 = 〈i′, j′〉. Summation over these quadruplets yields J2` where ` is the number of links between A89

and B.90

4. In the triangular lattice there’s a fourth option where there exist two distinct spins i, i′ ∈ A which have a common91

neighbor j ∈ B. The sum over such pairs of spins in A is denoted
∑′

aa′ .92

Therefore, the numerator of Eq. (S9) yields, to second order in β,93

PA(za) = 2NB
1− βEA(zA) + 1

2β
2 (EA(za)2 + J2NB

links + J2`+ J2∑′
aa′ zaza′

)

Z
+O

(
β3) . [S11]94

Proceeding with the expansion, plugging in Eq. (S8) and using NA
links +NB

links + ` = Nlinks, we get

PA(za) =
1− βEA(za) + 1

2β
2EA(za)2 + 1

2β
2J2∑′

aa′ zaza′

ZA
+O

(
β3) ,with [S12]

ZA = 2N
A
[
1 + 1

2β
2J2NA

links

]
+O

(
β3) . [S13]

Eq. (S12) has the form of a Boltzmann distribution (note the similarity of Eq. (S13) to Eq. (S8)) derived from the
Hamiltonian EA, with extra couplings generated by the tracing out of B (the last term in the numerator of Eq. (S12)). A
straightforward but tedious calculation, which will not be detailed here, shows that up to quadratic order in β these couplings
do not affect the entropy. That is, while they do clearly affect the probabilities of individual states (as explicitly shown in
Eq. (S12)) their combined contribution to S cancels out to quadratic order when summed over all states. Therefore, as far as
entropy calculations are concerned we can write

PA(zA) ≈ e−βEA(Sa)

ZA
+O

(
β3) , ZA =

∑

zA

e−βEA(zA) +O
(
β3) , [S14]

and treat PA as a standard Boltzmann distribution, for which we have S = ∂T (T logZ). Plugging this into Eq. (S4) gives

M(A,B) = ∂T

(
T log ZAZB

ZX

)
+O

(
β3) . [S15]

Physically the numerator (ZAZB) is the partition function for all the spins in X without the interactions through links95

connecting A and B. Finally, using Eq. (S8) and Eq. (S13) we obtain the result96

MIsing(A,B) = 1
2

(
J

T

)2
`+O

(
β3) . [S16]97
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Note that neither the sign of J nor the lattice symmetry (square versus triangular) influence the answer to order β2 – the98

only relevant parameters are the number of links connecting the two subsystems ` and the coupling constant J . Also, up to99

this order the magnetic field H does not contribute. A very similar calculation leads to the same form for the XY model, with100

only a change in the prefactor:101

MXY(A,B) = 1
4

(
J

T

)2
`+O

(
β3) . [S17]102

Both Eq. (S16) and Eq. (S17) are valid also when A and B do not compose the whole system, but are a part of a larger system.103

B. Low-temperature expansion - XY model in a magnetic field. Statistical mechanics problems of continuous variables can be104

treated at low temperatures via an harmonic treatment of the interactions, i.e. a mapping to a system of coupled harmonic105

oscillators. This technique can be applied to computeM too (4), yielding closed-form formulas. Here we apply this method to106

the XY model in an external magnetic field (H) in the zero-temperature limit.107

The XY model in a magnetic field is defined by the partition function

Z =
∫ 2π

0
dθe−βE(θ), E(θ) = −J

∑

〈i,j〉

cos(θi − θj)−H
∑

i

cos θi. [S18]

At low temperature T � J,H the variables θ explore only the vicinity of the minimum of the external potential −H cos θi,
and since we consider a frustration-free lattice (square lattice), also the differences θi − θj on neighbouring links 〈i, j〉 will be
located near the minima of −J cos(θi − θj). Performing a harmonic approximation of the overall potential we get:

Z0 =
∫ ∞

−∞
dθe−βE0(θ) , E0(θ) = J

2
∑

〈i,j〉

(θi − θj)2 + H

2
∑

i

θ2
i + const . [S19]

Here, we extended the variables θi from being angles to unconstrained real numbers. Accordingly, microstates of the full system
X satisfy a multivariate normal distribution

p(θ) = e−
1
2 θ

TMθ

Z0
, with Mij = H + zJ

T
δij − J

T
δ〈i,j〉 . [S20]

M is the system’s Hessian, a N ×N matrix where N is the number of sites in the system X. Here z is the coordination number
(z = 4 for a square lattice) and δ〈i,j〉 = 1 if i and j are neighbors and 0 otherwise. The entropy of a multivariate Gaussian is
well known:

S(X) = N

2 log 2πe− 1
2 log detM. [S21]

For a single spin in a magnetic field, for example, this gives S = log
(√

2πeT/H
)
which is valid as long as the variance of θ,108

(T/H)2, is sufficiently small compared to (2π)2.109

The key object required for the calculation of the M is the marginal probability for a subsystem A. It is obtained by
integrating p(θ) over all degrees of freedom θB ∈ B,

pA(θA) = 1
Z

∫ 2π

0
dθBe

−βE(θA,θB). [S22]

To perform the Gaussian integral we decompose the matrix M as

M =
(
MAA MAB

MBA MBB

)
, [S23]

where, MAA is an NA ×NA matrix acting only on the NA degrees of freedom in A, and similarly for MBB . The off-diagonal
blocks MAB = MT

BA couple the two subsystems. Thus,

pA(θA) = e−
1
2 θ

T
AMAAθA

∫
dθB exp

[
−1

2θ
T
BMBBθB − θTAMABθB

]
. [S24]

Performing the Gaussian integral over θB gives

P (θA) =
(
(2π)NB detMBB

)1/2 exp
[
−1

2θ
T
AMAAθA − 1

2θ
T
A

(
MABM

−1
BBMBA

)
θA

]
. [S25]

Since the marginal distribution is also Gaussian, its entropy is given by Eq. (S21), with the effective Hessian (covariance
matrix) of A given by Eq. (S24),

Meff
A = MAA −MABM

−1
BBMBA . [S26]
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Meff
A contains direct interactions inside A, as well as new interactions MABM

−1
BBMBA generated by tracing out the environment110

B. We thus have111

M = 1
2 log detMX

detMeff
A detMeff

B

. [S27]112

Note that this expression gives the T → 0 limit of M and is independent of T . Finite temperature corrections are not113

present in the harmonic approximation and start to appear when the variance of spins becomes of order 2π and deviations114

from the Gaussian distribution are sampled.115

For the system described in the main textM was computed by evaluating the determinant in Eq. (S21) numerically using116

the effective covariance matrix Eq. (S26).117

5. M between two XY-spins in a magnetic field118

It is instructive to contrast the result in the main text for theM of the XY model with that for a system consisting of only119

two spins. This can be calculated exactly, and is shown in Fig. S5. At high temperature M decreases like M → 1
4

(
J
T

)2,120

indicated by a dashed line in the right panel, as predicted by Eq. (S17). As T → 0, we can see in the central panel a logarithmic121

divergence with T which is cut-of when T ≈ H.122

Indeed it is easy to derive from Eqs. (S20), (S26) and (S27) the zero temperature limit ofM,

lim
T→0
Mtwo spins = log H + J√

H(H + J)
. [S28]

As H increases, the cutoff of the logarithmic divergence occurs at higher temperatures, and the peak thus shifts to higher123

temperatures. Thus,the peak itself, as well as its H-dependence features, are already present in a two-spin system.124
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Fig. S5. Exact calculation ofM for two XY spins (J = 1) in the presence of external field (H). The same data are shown in linear-linear, log-linear and log-log scales (some
data of the middle panel appears also in the main text). Colored vertical dashed lines show T = H with the color code corresponding to H as in the legend. The dashed black
line in the right panel is the high temperature expansion limit of Eq. (S17).

6. Simulations of the soft sphere system125

The system is an equimolar system of larger and smaller spheres. We choose the units such that the diameter of the smaller126

sphere is unity, and the radius of the larger one is 1.4. The dynamics were simulated using a fast inertial relaxation engine127

algorithm (5) in a square box of size 150 with periodic boundary conditions. 100 realizations were generated for each φ, ranging128

between 14,000 to 17,000 particles.129

7. Discrete vs. differential entropy130

As discussed in the main text, the system of bidisprese sphere is a continuous system, parameterized by a continuous vector131

x ∈ R2N where N is the number of particles in the system. However, the state of the system is provided to the ANN as a132

binary image, which is a discrete variable. Here we discuss the subtleties of comparing the discrete and continuous defintions of133

entropy (Eq. (1) and (7) of the main text, respectively).134

Let us denote p(x) the probability density of observing the configuration x. The discretization is a mapping of the continuous
vector x to an image I(x) where I takes one of a finite set of values which we denote I1, I2, . . . . Each Ii is associated with its
pre-image Ωi, observation probability pi and phase-space volume vi, defined as follows:

Ωi ≡ {x | I(x) = Ii} , pi ≡
∫

Ωi

p(x)dx , vi ≡
∫

Ωi

1 dx . [S29]
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In the limit of very fine discretization, i.e. maxi{vi} → 0, and assuming p(x) is not ill-behaved, the second definition can be
approximated as

pi ≈ p(xi)vi , [S30]

where xi is any point in Ωi. This approximation is accurate when the discretization is fine enough such that p doesn’t change135

considerably across Ωi, i.e. when all configurations that are mapped to the same image are roughly equiprobable. When this136

happens, the differential entropy S̃ can be approximated by a Riemman sum:137

S̃ = −
∫
p(x) log p(x)dx ≈ −

∑

i

(
p(xi) log p(xi)

)
· vi

≈ −
∑

i

(
pi
vi

log
(
pi
vi

))
· vi =

∑

i

(−pi log pi + pi log vi) = S +
∑

i

pi log vi .
[S31]138

We see that S̃ differs from S by a term logarithmic in the resolution size. This term, however, cancels out when computingM139

rather than S.140

To see this, let’s say x and y are random variables, with the joint probability density p(x,y) and marginal densities
px(x) =

∫
p(x,y)dy and py(y) =

∫
p(x,y)dx. In addition, we have two discretization schemes Ix(x) and Iy(y) that map each

observation to some finite set. We define, in analogy to Eq. (S29),

Ωij ≡
{

(x,y) | Ix(x) = Ixi and Iy(x) = Iyj
}
, pij ≡

∫

Ωij

p(x,y)dx , vij ≡
∫

Ωij

1 dxdy ,

Ωxi ≡ {x | Ix(x) = Ixi } , pxi ≡
∫

Ωx
i

px(x)dx , vxi ≡
∫

Ωx
i

1 dx ,

Ωyj ≡
{
y | Iy(y) = Iyj

}
, pyj ≡

∫

Ωy
j

py(y)dy , vyj ≡
∫

Ωy
j

1 dy .

Eqs. (1)-(2) of the main text can be combined to represent the mutual information as

M =
∫
p(x,y) log

(
p(x,y)

px(x)py(y)

)
dx dy [S32]

Since vij = vxi v
y
j , the analog of Eq. (S30) is

pij ≈ p(xi,yj)vxi vyj , pxi ≈ px(xi)vxi , pyj ≈ py(yj)vyj . [S33]

Finally, combining all the above we get

M≈
∑

i,j

p(xi,yj) log
(

p(xi,yj)
px(xi)py(yj)

)
vxi v

y
j ≈

∑

i,j

pij log
(

pij
pxi p

y
j

)
, [S34]

which identifies with the discrete defintion ofM.141

As an aside, we note that Eq. (S31) has an intuitive interpretation: log vi is exactly the entropy of a uniform distribution142

over Ωi (whose probability density is p = 1/vi). Therefore, the differential entropy S̃ measures the uncertainty (=entropy)143

associated with knowing in which Ωi the observation x resides, plus the average uncertainty (=entropy) associated with144

knowing where does xi resides within Ωi. The latter cancels out when computingM.145

8. Derivation of Eq. (10) of the main text146

Eq. (4) of the main text starts with a system X0 of a given volume V0 and looks at smaller and smaller subsystems (i.e. larger
m). For the purposes of Eq. (10) of the main text we want to explore the other direction – assuming that X0 is by itself a part
of a much larger system and extrapolating from X0 to the system size. To comply with the notation of the main text, where
larger m’s correspond to smaller subsystems Xm, we consider subsystems which are formally indexed by negative integers.
Also, it will be useful to consider Eq. (3) of the main text normalized per unit volume. For any k we have

S(Xk−1) = 2S(Xk)−M(Xk) ⇒ s(Xk−1) ≡ S(Xk−1)
Vk−1

= s(Xk)− M(Xk)
2Vk

, [S35]
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where we used the fact that Vk−1 = 2Vk. Using this relation recursively we get147

s(X−1) = s(X0)− M(X0)
2V0

s(X−2) = s(X−1)− M(X−1)
2V−1

= s(X0)− M(X0)
2V0

− M(X−1)
4V0

s(X−3) = s(X−2)− M(X−2)
2V−2

= s(X0)− M(X0)
2V0

− M(X−1)
4V0

− M(X−2)
8V0

...

s(X−m) = s(X0)− 1
2V0

m−1∑

k=0

M(X−k)
2k

[S36]148

We now assume that for subsystems larger than X0 the mutual information is extensive, so by Eq. (9) of the main text we
haveM(X−k) = (`−k/`0)M(X0). For our choice of selecting subsystems, we also have `−k/`0 = 2b k+1

2 c, where b·c is the floor
function. We assume that X0 is a square subsystem (subsystems alternate between square and rectangular, cf. Fig. 1 of the
main text). Putting all this together we get

S(X−m) = s(X0)− M0

2V0

m−1∑

k=0

2b
k+1

2 c−k . [S37]

One can easily verify that in the limit m→∞ the sum in the last equation approaches 4. We conclude that

s(X−m) = s(X0)− 2M0

V0
. [S38]
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Fig. S6. Entropy estimation of the bidisperse soft sphere mixture, using two different methods, see text of Sec. 9 for a description. The dashed black line represents the
theoretical jamming transition point.

9. Comparing MICE and the results of Zu et. al.149

In the main text we claimed that MICE outperforms the compression method used by Zu et. al. (6) in detecting the jamming150

point. This was based on their statements that their Computable Information Density (CID) estimates do not show a minimum151

near the jamming point (see Sec. 3.5 of their paper).152

In Fig. S6 we show a direct comparison between our data (left column, the same data appear as Fig. 4F and its inset in the153

main text) and theirs (right column, taken from Figure 6A of (6)).154
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The top row shows the estimation of the “excess entropy”, i.e. the difference in entropy from some baseline behavior: With155

MICE this is achieved by omitting the entropic contribution of the smallest scales, cf. Eq. (8) of the main text. Zu et. al. do156

this by subtracting the information density of an ideal gas (see Sec. 2.3.2 of Zu et. al. (6)). These two baselines are conceptually157

similar but quantitatively different and therefore the absolute numbers differ somewhat between the methods. The trend,158

however, is informative.159

To better visualize the signature of the transition, in the bottom row we plot the same data as the top row, with a linear160

trend (shown in dashed orange in the top row) subtracted. It is seen that the deviations from linearity are very pronounced161

when measured with MICE, but the CID estimation shows small deviations compared to the overall effect.162

References163

1. Paszke A, et al. (2019) Pytorch: An imperative style, high-performance deep learning library in Advances in Neural164

Information Processing Systems 32, eds. Wallach H, et al. (Curran Associates, Inc.), pp. 8024–8035.165

2. Belghazi I, Rajeswar S, Baratin A, Hjelm RD, Courville AC (2018) MINE: mutual information neural estimation. CoRR166

abs/1801.04062.167

3. Kent-Dobias J, Sethna JP (2018) Cluster representations and the wolff algorithm in arbitrary external fields. Phys. Rev. E168

98(6):063306.169

4. Katsinis D, Pastras G (2020) An inverse mass expansion for the mutual information in free scalar qft at finite temperature.170

Journal of High Energy Physics 2020(2):1–60.171

5. Bitzek E, Koskinen P, Gähler F, Moseler M, Gumbsch P (2006) Structural relaxation made simple. Phys. Rev. Lett.172

97(17):170201.173

6. Zu M, Bupathy A, Frenkel D, Sastry S (2020) Information density, structure and entropy in equilibrium and non-equilibrium174

systems. Journal of Statistical Mechanics: Theory and Experiment 2020:023204.175

10 of 10 Amit Nir, Eran Sela Roy Beck, and Yohai Bar Sinai



4 Conclusions

This work introduces MICE, a method for estimating arbitrary physical systems’ entropy. The
introduced method proved to be both accurate and efficient. We demonstrated that MICE naturally
allows us to decompose the entropy into contributions from different scales, providing an insightful
diagnostic for physical systems’ thermodynamics.

The decomposition of the system might be helpful when studying correlation lengths of a
physical system. For example, we showed that using MICE we can identify the bidisperse mix-
ture’s relevant scale. Theoretically, we could create a physical system with controllable correlation
lengths and show that using MICE these could be identified.

We have examined the capabilities of MICE on some canonical equilibrium physical systems
- the 2D ferromagnetic and anti-ferromagnetic Ising models and the XY model. We have seen that
MICE achieves a state of the art accuracy in entropy estimation.

This means that using MICE we might be able to examine some essential physical systems,
such as the configurational entropy of amorphous solids [69], the entropy crisis of glassy sys-
tems [59], the entropy of active matter [25].

Although being promising, the currently proposed method has its limits. Since MICE is based
on neural networks, it requires a reasonably powerful computer, with at least a decent GPU on it
to run efficiently.

Physical simulations often have an extremely high resolution or many particles. ANNs in gen-
eral, and as a result MICE as well, can handle inputs of limited sizes. It is important to remember
that the computational bottleneck of MICE is the minimal system size (volume in 3D) for which
the area law (cf. (2.2)) is observed. This determines the largest input on which an ANN should
be trained. Recent studies have shown successful implementations of ANNs on a 3D input of size
128×128×128 [70], but this is a limiting factor of the proposed method.

The current models on which MICE was tested had short-range correlations. These models are
well fitted for convolutional neural networks, such as the one presented in this article. However, it
is not clear how our model would perform on a system with long-range interactions.

Many studies have shown that some architectures allow neural networks to deal with "long-
range interaction"-like problems. These include natural language processing, where neural net-
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works need to understand the relationship between words that are spread in text [71], or scene
description where the network needs to identify the relation between pixels far from each other in
images [72]. Inspired by these studies, I believe it would be fascinating to examine MICE with
new architectures on physical systems with long-range interactions. I believe that on these sys-
tems, MICE could outperform other methods, as the compression-based methods, in a significant
manner.

I believe that MICE offers more than an efficient tool for entropy estimation. This research
showed that using mutual information could identify phase transitions in the 2D Ising model.
Wilms et al. detected the phase transition in the many-body quantum Lipkin-Meshkov-Glick
model using mutual information [73]. Thus, it should be interesting to examine the behavior
of mutual information for systems with complex phase transition, and MICE might offer a new
insightful tool for studying physical systems.

Inspired by Wilms et al., I believe it should be possible and valuable to fit MICE for quantum
systems. In quantum systems, the mutual information is fundamentally related to the entanglement
of quantum states [74]. A relevant direction could be the extraction of entropy from quantum
Monte Carlo simulations.

Lastly, I believe that we can benefit from the fact that MICE is based on a neural network
model. These models are widely investigated, and many methods were introduced to receive
insights from these models.

For example, in this research, we showed that using the transfer learning method, the run time
of MICE is reduced by a factor of 10 and becomes around a few hours for an entire system. This
implies that the network learns the core physical features of the systems. Although not being
thoroughly researched in this work, it might be interesting to look at the network’s feature maps
as a function of temperature or other system properties.
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 תקציר 

תפקיד   תהבסיסיים בחקר של מערכות פיזיקליות. היא מקושרת לרמת הסדר במערכת ומשחק  הגדליםהיא אחד אנטרופיה 

רופיה נחקרת רבות גם במסגרת תורת  טמשמעותי בחקר של מעברי פאזה, היווצרות של תבניות, קיפול חלבונים ועוד. אנ

 . יכלשה במערכת נתוניםהאינפורמציה, שם היא מוגדרת ככמות המידע שקיים 

, דיוק נמוך  התאמה למערכות מסוימות בלבדרופיה לוקות בעלות חישובית גבוהה, טלמרות זאת, שיטות קיימות להערכת אנ

מתוך מעבר על    רופיהטחישוב ישיר של אנלמשל, ות חזקות.  אינטראקצי ותוחוסר יכולת להתמודד עם מערכות מורכבות בעל

כל מצבי המערכת נהיה לא ישים ברמה החישובית כבר עבור מערכות בינאריות קטנות. נוסף על כך, שיטות רבות שעובדות  

 עבור מערכות בשיווי משקל לא מתאימות למערכות מחוץ לשיווי משקל. 

רופיה על ידי חלוקה חוזרת ונשנית של מערכת  טזה מראה שניתן לחשב אנ בהשראת רעיונות מתורת האינפורמציה, מחקר

  האינפורמציהבין כל זוג חצאים של תתי מערכות. הערכת  ההדדית  האינפורמציהלתתי מערכות קטנות יותר, והערכה של 

ארכיטקטורה של רשת, כך  ה לאחרונה. שיטה זו מתאימה לכל עמבוססת למידת מכונה שהוצשיטה  באמצעות נעשית  ההדדית

ונה. בניגוד לשיטות נוספות שהוצעו לאחרונה,  תשניתן לבחור ארכיטקטורה שמתאימה למבנה ולסימטריות של המערכת הנ

מחקר זה מצטרף לרבים אחרים שמראים   רשתות נוירונים מותאמות היטב לעבודה עם מערכות בשניים ושלושה ממדים.

 האחרונות באלגוריתמים במדעי המחשב בכלל, ובלמידת מכונה בפרט.  תתפתחויושחקר הפיזיקה יכול להפיק רבות מהה

תרמיות, בדיוק גבוה במיוחד.  - רופיה לשלל מערכות, תרמיות וא טחישוב מדויק של אנ תהמוצעת לעיל מאפשרהשיטה 

(  jamming) נקודת הדחיסות , ושימשה לזיהויספציפית, השיטה המוצעת נבחנה באמצעות מספר מערכות ספין קלאסיות 

(, השיטה  transfer learningשל מערכת דו רכיבית של דסקאות רכות. פרט לכך, באמצעות שיטת העברת הלמידה ) 

 המוצעת פועלת בזמן חישוב מהיר יחסית. 

יכול לספק תובנות משמעותיות  עצמה  האינפורמציה ההדדיתרופיה, טלבסוף, מועלה האפשרות שפרט לשימושיות בחישוב אנ

את כל המידע הרלוונטי אודות המערכת   הבתוכ תכולל   שהאינפורמציה ההדדיתמערכות פיסיקליות. מכיוון בחקר של 

 על מנת לזהות מעברי פאזה ולחשב אורכי קורלציה.  ההפיסיקלית, ניתן להשתמש ב
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